Screening of Mercury Absorption in Brown Macroalgae Hormophysa triquetra and Red Macroalgae Gracilaria salicornia from Pari Island

Muhammad Reza Cordova, Ahmad Muhtadi

Abstract


Macroalgae or seaweed has good absorptive capacity against all substances present in the aquatic environment, including mercury (Hg). The purpose of this study was to determine mercury content in brown macroalga Hormophysa triquetra and red macroalga Gracilaria salicornia and also on sediment and then assess the potential of both types of macroalgae as mercury bioaccumulator. Samples of macroalgae and sediment were taken from the northern, eastern, southern, and western regions of Pari Island, Seribu Archipelago in April 2016, analyzed by Mercury Analyzer NIC MA-3000. The results of this study indicated the mercury content in red macroalgae was higher than brown macroalgae. Mercury content in macroalgae from Pari Island waters was in the range of 21.50 ± 9.59 μg/kg (brown macroalga) and 41.45 ± 14.00 μg/kg (macroalgae red). The complexity of the functional groups makes the mercury content higher in the red macroalgae than in the brown macroalgae. The ability of mercury accumulation makes these macroalgae species potential to become bioaccumulator.


Keywords


screening, mercury, macroalgae, absorption, Pari Islands

Full Text:

PDF ()

References


Akcali, I. and F. Kucuksezgin. 2011. A Biomonitoring Study: Heavy Metals in Macroalgae from Eastern Aegean Coastal Areas. Marine Pollution Bulletin 62(3):637–45. doi:10.1016/j.marpolbul.2010.12.021.

Aldor, I., E. Fourest and B. Volesky. 1995. Desorption of Cadmium from Algal Biosorbent. The Canadian Journal of Chemical Engineering 73(4):516–22. doi:10.1002 / cjce . 5450730412.

Al-Shwafi, N. A. and A. I. Rushdi. 2008. Heavy Metal Concentrations in Marine Green, Brown and Red Seaweeds from Coastal Waters of Yemen, the Gulf of Aden. Environmental Geology 55(3):653–60. doi:10.1007/s00254-007-1015-0.

Black, W. A. P. and R. L. Mitchell. 1952. Trace Elements in the Common Brown Algae and in Sea Water. Journal of the Marine Biological Association of the United Kingdom 30(03):575–84. doi:10.1017/S00253154000-12984.

Bryan, G. W. and W. J. Langston. 1992. Bioavailability, Accumulation and Effects of Heavy-Metals in Sediments with Special Reference to United-Kingdom Estuaries - a Review. Environmental Pollution 76(2):89–131. doi: 10.1016/0269-7491(92)90099-V.

Chakraborty, S., T. Bhattacharya, G. Singh, and J. P. Maity. 2014. Benthic Macroalgae as Biological Indicators of Heavy Metal Pollution in the Marine Environments: A Biomonitoring Approach for Pollution Assessment. Ecotoxicology and Environmental Safety 100(1):61–68. doi: 10.1016 / j.ecoenv. 2013 . 12 . 003.

Chmielewská, E., J. Medved´ and S. Republic. 2001. Bioaccumulation of Heavy Metals by Green Algae Cladophora glomerata in a Refinery Sewage Lagoon. Croatica Chemica Acta 74(1):135–45.

Diaz, J. H. J., R. D. Thilaga, C. Veerabahu and Radhika. 2011. Bioaccumulation Capacity of Some Seaweed from Thoothukudi Coast Tamil Nadu, India. World Journal of Fish and Marine Sciences. IDOSI Publications 3(3):247–51. http://www.idosi.org/wjfms/wjfms3(3)11/13.pdf.

Davis, T. A., B. Voleskyand and A. Mucci. 2003. A review of the biochemistry of heavy metal biosorption by brown algae. Water Research. 37:4311-4330.

El Shoubaky, G. A. and E. A. Salem. 2014. Terpenes and Sterols Composition of Marine Brown Algae Padina pavonica (Dictyotales) and Hormophysa triquetra (Fucales). International Journal of Pharmacognosy and Phytochemical Research 6(4):894–900.

FAO. 2016. Food and Agriculture Organization of the United Nations Yearbook. Fishery and Aquaculture Statistics. 2014. FAO. http://www.fao.org/fi/oldsite/eims_search/1_dett.asp? Calling=simple_s_result〈=en& pub_id=316853.

Flouty, R. and G. Estephane. 2012. Bioaccumulation and Biosorption of Copper and Lead by a Unicellular Algae Chlamydomonas Reinhardtii in Single and Binary Metal Systems: A Comparative Study. Journal of Environmental Management 111:106–14. doi:10.1016/j.jenvman.2012.06 .042.

Foster, P. 1976. Concentrations and Concentration Factors of Heavy Metals in Brown Algae. Environmental Pollution 10(1): 45–53. doi:10.1016/0013-9327(76)90094-X.

Gardea-Torresdey J. L., M. K. Becker-Hapak, J. M. Hosea and D. W. Darnall. 1990. Effect of chemical modification of algal carboxyl groups on metal ion binding. Environmental Science and Technology 24(9):1372 –1378.

Guiry, M. D. and G. M. Guiry. 2016. AlgaeBase. World-Wide Electronic Publication. National University of Ireland. doi:http://www. algaebase.org.

Henriques, B., L. S. Rocha, C. B. Lopes, P. Figueira, R. J. R. Monteiro, A.C. Duarte, M.A. Pardal and E. Pereira. 2015. Study on Bioaccumulation and Biosorption of Mercury by Living Marine Macroalgae: Prospecting for a New Remediation Biotechnology Applied to Saline Waters. Chemical Engineering Journal 281:759–70. doi:10.1016/j.cej.2015.07.013.

Heral, M., D. Razet, J. M. Deslous-Paoli, F. Manaud, I. Truquet and J. Garnier. 1984. Hydrobiologie du Bassin de Marennes-Oléron - Résultats du Réseau National d’Observation: 1977 à 1981. Musée d’Histoire Naturelle, La Rochelle. Annales de La Société des Sciences Naturelles de La Charente-Maritime 7(2):259–77. http://archimer.ifremer.fr/doc/00000/ 2934/

Hyman, M. 2004. The Impact of Mercury on Human Health and the Environment. In Alternative Therapies in Health and Medicine 10:70–75. doi:10.1590/S0325-00752012000-300017.

IADC/CEDA. 1997. Environmental Aspects of Dredging: 2a. Conventions, Codes and Conditions: Marine Disposal. Netherlands: International Association of Dredging Companies.

Ivanov, M. V. 2014. Mercury in Bottom Sediments of Marginal Seas of Northeast Asia. Russian Journal of Pacific Geology 8(4):288–99. doi:10.1134/S1819714014040046.

Jalali, R., H. Ghafourian, Y. Asef, S. J. Davarpanah and S. Sepehr. 2002. Removal and Recovery of Lead Using Nonliving Biomass of Marine Algae. Journal of Hazardous Materials 92(3):253–62. doi:http://dx.doi.org/10.1016 /S0304-3894(02)00021-3.

Khaled, A., A. Hessein, A. M. Abdel-Halim and F. M. Morsy. 2014. Distribution of Heavy Metals in Seaweeds Collected along Marsa-Matrouh Beaches, Egyptian Mediterranean Sea. Egyptian Journal of Aquatic Research 40(4):363–71. doi:10.1016/j.ejar.2014.11.007.

Kratochvil D and B. Volesky. 1998. Advances in the biosorption of heavy metals. Trends Biotechnology 16:291– 300.

Lee, Y. C. and S. P. Chang. 2011. The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresource Technology 102(9):5297–5304. https://doi.org/10.1016/j.biortech.2010.12.103

Liu, G., Y. Cai and N. O’Driscoll. 2011. Environmental Chemistry and Toxicology of Mercury. doi:10.1002/9781118146644.

Mucha, A. P, A. A Bordalo and M. T. S. D. Vasconcelos. 2004. Sediment Quality in the Douro River Estuary Based on Trace Metal Contents, Macrobenthic Community and Elutriate Sediment Toxicity Test (ESTT). Journal of Environmental Monitoring 6(7):585–92. doi:10.1039/b401855a.

Naser, H. A. 2013. Assessment and Management of Heavy Metal Pollution in the Marine Environment of the Arabian Gulf: A Review. Marine Pollution Bulletin. doi:10.1016/ j.marpolbul.2013.04.030.

Nichols, T., and A. Holmes. 2007. Non-Parametric Procedures. In Statistical Parametric Mapping: The Analysis of Functional Brain Images. Pages 253–72. doi:10.1016/B978-012372560-8/50021-8.

Nuriwati, D. dan S. T. Hartati. 1985. Pengaruh Logam Berat Merkuri terhadap Pertumbuhan Makroalga (Gracilaria lichenoides) serta Daya Serapnya di Teluk Jakarta. Jurnal Penelitian Perikanan Laut (Indonesia) 33: 21–26.

Rai, L. C., J. P. Gaur and H. D. Kumar. 1981. Phycology and Heavy-Metal Pollution. Biological Reviews 56:99–151. doi:10.1111/ j.1469-185X.1981.tb00345.x.

Rainbow, P. S. 1995. Biomonitoring of Heavy Metal Availability in the Marine Environment. Marine Pollution Bulletin 31(4-12):183–92. doi:10.1016/0025-326X(95)00116-5.

Rodríguez-Figueroa, G. M., E. Shumilin and I. Sánchez-Rodríguez. 2009. Heavy metal pollution monitoring using the brown seaweed Padina durvillaei in the coastal zone of the Santa Rosalía mining region, Baja California Peninsula, Mexico. Journal of Applied Phycology 21(1):19–26. doi:10.1007/s10811-008-9346-0.

Ryan, S., P. McLoughlin and O. O’Donovan. 2012. A Comprehensive Study of Metal Distribution in Three Main Classes of Seaweed. Environmental Pollution 167:171–77. doi:10.1016/j.envpol.2012.04.006.

Sanusi, H. S. 2006. Kimia Laut Proses Fisik Kimia dan Interaksinya Dengan Lingkungan. Bogor: Departemen Ilmu dan Teknologi Kelautan, Fakultas Perikanan dan Ilmu Kelautan Institut Pertanian Bogor.

Schiewer S and B. Volesky. 2000. Biosorption processes for heavy metal removal. In: Lovley DR, editor. Environmental microbe– metal interactions. Washington, DC: ASM Press. p 329–357.

Sedgwick, P. 2012. Parametric v Non-Parametric Statistical Tests. Bmj 344(mar14 2):e1753. doi:10.1136/bmj.e1753.

Shams El-Din, N. G., L. I. Mohamedein and K. M. El-Moselhy. 2014. Seaweeds as bioindicators of heavy metals off a hot spot area on the Egyptian Mediterranean Coast during 2008-2010. Environmental Monitoring and Assessment 186(9):5865–5881. doi:10. 1007/s10661-014-3825-3

Sheng, P. X., Y. P. Ting, J. P. Chen and L. Hong. 2004. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. Journal of Colloid and Interface Science 275:131-141

Singh, K. P., A. Malik, S. Sinha, V. K. Singh and R. C. Murthy. 2005. Estimation of Source of Heavy Metal Contamination in Sediments of Gomti River (India) Using Principal Component Analysis. Water, Air, and Soil Pollution 166(1-4):321–341. doi:10.1007/ s11270-005-5268-5.

Tabarsa, M., M. Rezaei, Z. Ramezanpour and J. R. Waaland. 2012. Chemical Compositions of the Marine Algae Gracilaria salicornia (Rhodophyta) and Ulva lactuca (Chlorophyta) as a Potential Food Source. Journal of the Science of Food and Agriculture 92(12):2500–2506. doi:10.1002/jsfa.5659.

Tongkumchum, P. 2005. Two-dimensional boxplot. Songklanakarin Journal Science Technology 27(4):859-866

Topcuoğlu, S., K. C. Güven, N. Balkıs and Ç. Kırbaşoğlu. 2003. Heavy Metal Monitoring of Marine Algae from the Turkish Coast of the Black Sea, 1998–2000. Chemosphere 52(10):1683–1688. doi:http://dx.doi.org/10 .1016/S0045-6535(03)00301-1.

United Kingdom. 1990. Environmental Protection Act. Environmental Protection Act. http://www.legislation.gov.uk/ukpga/1990/43/pdfs/ukpga_19900043_en.pdf.

Volesky B. 1991. Biosorption of heavy metals. Boca Raton, FL: CRC Press, Inc.

Volesky, B. and Holan, Z. R. 1995. Biosorption of heavy metal. Biotechnology Progress 11(3):235-250.

Varotto, L., S. Domeneghetti, U. Rosani, C. Manfrin, M. P. Cajaraville, S. Raccanelli, A. Pallavicini and P. Venier. 2013. DNA Damage & Transcriptional Changes in the Gills of Mytilus galloprovincialis Exposed to Nanomolar Doses of Combined Metal Salts (Cd, Cu, Hg). PLoS ONE 8 (1). doi:10.1371 /journal.pone.0054602.

Zeraatkar, A. K., H. Ahmadzadeh, A. F. Talebi, N. R. Moheimani and M. P. McHenry. 2016. Potential use of algae for heavy metal bioremediation, a critical review. Journal of Environmental Management. 181:817-831. ISSN 0301-4797. https://doi.org/10.1016/j. jenvman.2016.06.059


Refbacks

  • There are currently no refbacks.
Powered by OJS | Design by ThemeOJS