Konsumsi Oksigen Ikan Uceng Nemacheilus fasciatus (Valenciennes, 1846) pada Kondisi Padat Tebar yang Berbeda

Aliati Iswantari, Kurniawan Kurniawan, Bambang Priadi, Vitas Atmadi Prakoso, Anang Hari Kristanto


Oxygen Consumption of Barred Loach Nemacheilus fasciatus (Valenciennes, 1846) under Different Stocking Densities. In aquaculture system, fish growth is affected by stocking densities. One way to predict the effect of stocking density on growth is to determine fish metabolic rate through oxygen consumption measurements. In Barred loach Nemacheilus fasciatus (Valenciennes, 1846), the information was scarce on oxygen consumption. This study was to analyze the effect of stocking density on oxygen consumption in Barred loach conducted at Research Institute for Freshwater Aquaculture and Fisheries Extension, Bogor in May 2018. Barred loach (total length: 5.79 ± 0.47 cm, weight: 1.32 ± 0.34 g) was observed its oxygen consumption on three different stocking densities (5, 10, and 15 fish/L) by using closed respirometers (volume: 1.4 L) with three replications of each treatment. Measurement of oxygen consumption was carried out under normoxia and hypoxia conditions. In addition, fish behavior and ventilation rate were also observed and recorded according to treatment. The results showed that the highest oxygen consumption of barred loach was found in the stocking density of 5 fish/L (1250.6 ± 128.4 mg O2/kg/h) which was significantly different from the stocking density of 10 fish/L (626.9 ± 46.7 mg O2/kg/h) and 15 fish/L (596.9 ± 48.9 mg O2/kg/h). Meanwhile, oxygen consumption of barred loach under hypoxic conditions decreased significantly compared to normoxic conditions, which was marked by a decrease in their swimming activities. Although the ventilation rate in hypoxic conditions has decreased, the value was not significantly different from those of normoxia condition. Results of this study provide information that an increase in stocking density and hypoxic conditions in barred loach caused a decrease in oxygen consumption rates. In addition, this study showed that the critical oxygen level for barred loach was around 3.1 mg/L


Nemacheilus fasciatus, padat tebar, konsumsi oksigen


Arifin, O. Z., Subagja, J., Prakoso, V. A., & Suhud, E. H. (2017a). Effect of stocking density on growth performance of domesticated barb (Barbonymus balleroides). Indonesian Aquaculture Journal, 12(1), 1-6.

Arifin, O. Z., Prakoso, V. A., & Pantjara, B. (2017b). Ketahanan ikan tambakan (Helostoma temminkii) terhadap beberapa parameter kualitas air dalam lingkungan budidaya. Jurnal Riset Akuakultur, 12(3), 241-251.

Borger, R., de Boeck, G., van Auderke, J., Dommisse, R., Blust, R., & van den Linden, A. (1998). Recovery of the energy metabolism after a hypoxic challenge at different temperature conditions: a 31P-nuclear magnetic resonance spectroscopy study with common carp. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 120(1), 143-150.

Burggren, W. W., & Randall, D. J. (1978). Oxygen uptake and transport during hypoxic exposure in the sturgeon Acipenser transmontanus. Respiration Physiology, 34(2),171-183.

Cech, J. J., Mitchell, S. J., & Wragg, T. E. (1984). Comparative growth of juvenile white sturgeon and striped bass: effects of temperature and hypoxia. Estuaries, 7(1), 12-18.

Chang, Y. J., Jeong, M. H., Min, B. H., Neill, W. H., & Fontaine, L. P. (2005). Effect of photoperiod, temperature, and fish size on oxygen consumption in the black porgy Acanthopagrus schlegelii. Journal of Fish Science and Technology, 8, 142-150.

Cruz-Neto, A. P., & Steffensen, J. F. (1997). The effects of acute hypoxia and hypercapnia on oxygen consumption of the freshwater European eel. Journal of Fish Biology, 50, 759-769.

De las Heras, V., Martos-Sitcha, J. A., Yúfera, M., Mancera, J. M., & Martínez-Rodríguez, G. (2015). Influence of stocking density on growth, metabolism and stress of thick-lipped grey mullet (Chelon labrosus) juveniles. Aquaculture, 448, 29-37.

El‐Sayed, A. F. M. (2002). Effects of stocking density and feeding levels on growth and feed efficiency of Nile tilapia (Oreochromis niloticus L.) fry. Aquaculture Research, 33(8), 621-626.

Fry, F. E. J. (1971). The effect of environmental factors on the physiology of fish. In W. S. Hoar & D. J. Randall (Eds.), Fish Physiology, Vol. VI. Environmental relations and behavior. New York, United States: Academic Press.

García-Trejo, J. F., Peña-Herrejon, G. A., Soto-Zarazúa, G. M., Mercado-Luna, A., Alatorre-Jácome, O., & Rico-García, E. (2016). Effect of stocking density on growth performance and oxygen consumption of Nile tilapia (Oreochromis niloticus) under greenhouse conditions. Latin American Journal of Aquatic Research, 44(1), 177-183.

Herbert, N. A. & Steffensen, J. F. (2005). The response of Atlantic cod, Gadus morhua, to progressive hypoxia: fish swimming speed and physiological stress. Marine Biology, 147(6), 1403-1412.

Jobling, M. (1993). Bioenergetics: feed intake and energy partitioning. In J. C. Rankin & F. B. Jensen (Eds.), Fish Ecophysiology, Fish and Fisheries Series 9 (pp. 16-28). London, England: Chapman & Hall.

Jobling, M. (1994). Fish bioenergetics. London, England: Chapman & Hall.

Jorgensen, E. H., Christiansen, J. S., & Jobling, M. (1993). Effects of stocking density on food intake, growth performance and oxygen consumption in Arctic charr (Salvelinus alpinus). Aquaculture, 110(2), 191-204.

Kawamoto, N. (1977). Fish physiology. Tokyo, Japan: Koseisha-Koseikaku (in Japanese).

Laursen, D. C., Silva, P. I., Larsen, B. K., & Höglund, E. (2013). High oxygen consumption rates and scale loss indicate elevated aggressive behaviour at low rearing density, while elevated brain serotonergic activity suggests chronic stress at high rearing densities in farmed rainbow trout. Physiology & Behavior, 122, 147-154.

Lefevre, S., Wang, T., Phuong, N. T., & Bayley, M. (2011). Hypoxia tolerance and partitioning of bimodal respiration in the striped catfish (Pangasianodon hypophthalmus). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 158(2), 207-214.

Lefevre, S., Phuong, N. T., Wang, T., & Bayley, M. (2012). Effects of hypoxia on the partitioning of oxygen uptake and the rise in metabolism during digestion in the air-breathing fish Channa striata. Aquaculture, 364, 137-142.

Li, D., Liu, Z., & Xie, C. (2012). Effect of stocking density on growth and serum concentrations of thyroid hormones and cortisol in Amur sturgeon, Acipenser schrenckii. Fish Physiology and Biochemistry, 38(2), 511-520.

Magnoni, L. J., Eding, E., Leguen, I., Prunet, P., Geurden, I., Ozório, R. O., & Schrama, J. W. (2018). Hypoxia, but not an electrolyte-imbalanced diet, reduces feed intake, growth and oxygen consumption in rainbow trout (Oncorhynchus mykiss). Scientific Reports, 8(1), 4965.

Mamun, S. M., Focken, U., & Becker. K. (2013). A respirometer system to measure critical and recovery oxygen tensions of fish under simulated diurnal fluctuations in dissolved oxygen. Aquaculture International, 21, 31-44.

Millán-Cubillo, A. F., Martos-Sitcha, J. A., Ruiz-Jarabo, I., Cárdenas, S., & Mancera, J. M. (2016). Low stocking density negatively affects growth, metabolism and stress pathways in juvenile specimens of meagre (Argyrosomus regius, Asso 1801). Aquaculture, 451, 87-92.

Mishrigi, S., & Kubo, T. (1978). Effects of territoriality on oxygen consumption in Tilapia nilotica. Bulletin of the Faculty of Fisheries Hokkaido University, 29(4), 308-312.

Ott, M. E., Heisler, N., & Ultsch, G. R. (1980). A re-evaluation of the relationship between temperature and the critical oxygen tension in freshwater fishes. Comparative Biochemistry and Physiology Part A: Physiology, 67(3), 337-340.

Perry, S. F., Jonz, M. G., & Gilmour, K. M. (2009). Chapter 5. Oxygen sensing and the hypoxic ventilatory response. In J. G. Richards, A. P. Farrell, & C. J. Brauner (Eds.), Fish Physiology. Vol. 27: Hypoxia (pp. 193-253). New York, United States: Academic Press.

Petersen, L. H., & Gamperl, A. K. (2010). Effect of acute and chronic hypoxia on the swimming performance, metabolic capacity and cardiac function of Atlantic cod (Gadus morhua). Journal of Experimental Biology, 213(5), 808-819.

Pichavant, K., Person-Le-Ruyet, J., Le Bayon, N., Severe, A., Le Roux A., Quemener, L., Maxime, V., Nonnotte, G., & Boeuf, G. (2000). Effects of hypoxia on growth and metabolism of juvenile turbot. Aquaculture, 188(1-2), 103-114.

Pichavant, K., Person‐Le‐Ruyet, J., Bayon, N. L., Severe, A., Roux, A. L., & Boeuf, G. (2001). Comparative effects of long‐term hypoxia on growth, feeding and oxygen consumption in juvenile turbot and European sea bass. Journal of Fish Biology, 59(4), 875-883.

Pörtner, H. O., Heisler, N., & Grieshaber, M. K. (1985). Oxygen consumption and mode of energy production in the intertidal worm Sipunculus nudus L.: definition and characterization of the critical PO2 for an oxyconformer. Respiration Physiology, 53(3), 361-77.

Prakoso, V. A., Ath-thar, M. H. F., Subagja, J., & Kristanto, A. H. (2016). Pertumbuhan ikan uceng (Nemacheilus fasciatus) dengan padat tebar berbeda dalam lingkungan ex situ. Jurnal Riset Akuakultur, 11(4), 355-362.

Prakoso, V. A., & Chang, Y. J. (2018). Effects of hypoxia on oxygen consumption of tilapia fingerlings (Oreochromis niloticus). Oseanologi dan Limnologi di Indonesia, 3(2), 165-171.

Rahman, M. M., Mondal, D. K., Amin, M. R., & Muktadir, M. G. (2016). Impact of stocking density on growth and production performance of monosex tilapia (Oreochromis niloticus) in ponds. Asian Journal of Medical and Biological Research, 2(3), 471-476.

Randall, D. (1982). The control of respiration and circulation in fish during exercise and hypoxia. Journal of Experimental Biology, 100(1),275-288.

Rombough, P. J. (1988). Growth, aerobic metabolism, and dissolved oxygen requirements of embryos and alevins of steelhead, Salmo gairdneri. Canadian Journal of Zoology, 66(3), 651-660.

Ronald, N., Gladys, B., & Gasper, E. (2014). The effects of stocking density on the growth and survival of Nile tilapia (Oreochromis niloticus) fry at son fish farm, Uganda. Journal of Aquaculture Research and Development, 5(2), 222. doi:10.4172/2155-9546.1000222

Rees, B. B., Boily, P., & Williamson, L. A. C. (2009). Exercise- and hypoxia-induced anaerobic metabolism and recovery: a student laboratory exercise using teleost fish. Advances in Physiology Education, 33(1), 72-77.

Ren, Y., Wen, H., Li, Y., Li, J., He, F., & Ni, M. (2017). Effects of stocking density on lipid deposition and expression of lipid-related genes in Amur sturgeon (Acipenser schrenckii). Fish Physiology and Biochemistry, 43(6), 1707-1720.

Richards, J. G. (2011). Physiological, behavioral and biochemical adaptations of intertidal fishes to hypoxia. Journal of Experimental Biology, 214(2),191-199.

Ruer, P. M., Cech Jr, J. J., & Doroshov, S. I. (1987). Routine metabolism of the white sturgeon, Acipenser transmontanus: effect of population density and hypoxia. Aquaculture, 62(1), 45-52.

Sahoo, S. K., Giri, S. S., &. Sahu, A. K. (2004). Effect of stocking density on growth and survival of Clarias batrachus (Linn.) larvae and fry during hatchery rearing. Journal of Applied Ichthyology, 20(4), 302-305.

Salas-Leiton, E., Anguis, V., Manchado, M., & Canavate, J. P. (2008). Growth, feeding and oxygen consumption of Senegalese sole (Solea senegalensis) juveniles stocked at different densities. Aquaculture, 285(1-4), 84-89.

Smith, K. J., & Able, K. W. (2003). Dissolved oxygen dynamics in salt marsh pools and its potential impacts on fish assemblages. Marine Ecology Progress Series, 258, 223-232.

Subagja, J., Prakoso, V. A., Arifin, O. Z., & Kristanto, A. H. (2019). Pengaruh perbedaan padat tebar larva terhadap pertumbuhan dan sintasan pada ikan uceng (Nemacheilus fasciatus). Berita Biologi, xx, xx-xx.

Suresh, A. V., & Lin, C. K. (1992). Effect of stocking density on water quality and production of red tilapia in a recirculated water system. Aquacultural Engineering, 11(1), 1-22.

Svendsen, J. C., Steffensen, J. F., Aarestrup, K., Frisk, M., Etzerodt, A., & Jyde, M. (2012). Excess posthypoxic oxygen consumption in rainbow trout (Oncorhynchus mykiss): recovery in normoxia and hypoxia. Canadian Journal of Zoology, 90(1), 1-11.

Szczepkowski, M., Szczepkowska, B., & Piotrowska, I. (2011). Impact of higher stocking density of juvenile Atlantic sturgeon, Acipenser oxyrinchus Mitchill, on fish growth, oxygen consumption, and ammonia excretion. Archives of Polish Fisheries, 19(2), 59-67.

Tzaneva, V., Bailey, S., & Perry, S. F. (2011). The interactive effects of hypoxemia, hyperoxia, and temperature on the gill morphology of goldfish (Carassius auratus). American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 300(6), 344-1351.

Utami, P. (2017, September 15). Jaga populasi, anakan ikan Uceng yang jadi ikon Temanggung ini akan disebar ke sungai. Retrieved January 10, 2019, from https://jateng.merdeka.com/perikanan/jaga-populasi-anakan-ikan-uceng-yang-jadi-ikon-temanggung-ini-akan-disebar-ke-sungai-170915w.html

Wardhana, A. & Riana. (2015, December 7). Berpotensi bagus, ikan uceng akan dijadikan ikon daerah. Retrieved January 10, 2019, from https://www.jitunews.com/read/26619/berpotensi-bagus-ikan-uceng-akan-dijadikan-ikon-daerah

Wares, W. D., & Igram, R.(1979). Oxygen consumption in the fathead minnow (Pimephales promelas Rafinesque) - I: Effects of weight, temperature, group size, oxygen level and opercular movement rate as a function of temperature. Comparative Biochemistry and Physiology Part A: Physiology, 62(2), 351-356.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Powered by OJS | Design by ThemeOJS